

Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review

Why is it important to characterize dissolved organic matter (DOM)?

•DOM affects ecosystem health -e.g., light attenuation, nutrient availability •DOM affects all water treatment processes •Tracking DOM helps elucidate factors, such as land use and climate change, that affect ecosystem health

What tools or methods should be used to characterize DOM?

•Dissolved organic carbon concentration and ultraviolet absorbance are common •Fluorescence spectroscopy shows promise •Method involves exciting water with a range of wavelengths and measuring the wavelengths and intensities at which the sample fluoresces

Step 1-Compile & Identify:

•Compile PARAFAC studies

•Identify reoccurring PARAFAC components

-Table 1 shows the 3 reoccurring components in 53 studies published since 2000

Table 1. Spectral properties of reoccurring PARAFAC components

_	Component Label	EEM Wavelength Location	EEM	S Le
	1 (Peak A)	Ex: <230-260 nm Em: 400-500 nm	G 500 G 400 300 250 300 300 350 400 450 0.12 0.1 0.08 0.04 0.02 0 0 0 0 0 0 0 0 0 0 0 0 0	Conding 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6
-	2 (Peak A + C)	Ex: <240-275 (339-420) nm Em: 434-520 nm	G G G G G G G G G G G G G G G G G G G	0.4 80.3 0.1 0.1 0.1 0.3 0.1 0.3 0.0 0.1 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.0
-	3 (Peak A + M)	Ex: <240-260 (295-380) nm Em: 374-450 nm	G 500 G	0.5 0.4 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.2 0.0 0.0

Fluorescence/PARAFAC Strengths

Table 2 provides a summary of PARAFAC component tendencies. Spatial and temporal variability in PARAFAC components help predict changes in DOM behavior.

Table 2. Component trends based on consistent behavior across studies

Category	Trends	Category]
Terrestrial origin	1 > 3 > 2	Aluminum complexation	3
Conservatively mixed	1 > 3 > 2	Mercury complexation	2
Biologically degraded	2 > 3 > 1	Removal by coagulation	2
Biologically produced	2 > 3 > 1	Removal by ozonation	2
Photochemically degraded	2 > 3 > 1	Removal by BAC filtration	2
Photochemically produced	1 > 2 > 3	Removal by UV disinfection	3
Sediment sorption tendencies	2 > 3 > 1	Removal by chlorination	2
Iron complexation	2 > 3 > 1	Presence in finished water	2

Stephanie K. L. Ishii*, Treavor H. Boyer Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida *ishii@ufl.edu – 407.256.4515 – @WaterWeUpTo (twitter.com) – DOI: 10.1021/es2043504

Motivat

Why combine fluorescence w parallel factor analysis (PARAF

- •Fluorescence data are presented in excita emission matrices (EEMs)
- •PARAFAC separates EEMs into indepen fluorescent "components"
- •A "component" is a group of DOM com with similar fluorescent qualities

Methodology

Trends

 $3 > 2 \sim 1$ 2 > 3 ~ 1 2 > 3 > 1 $2 \sim 3 (1 \text{ unknown})$ 2 ~ 3 > 1 $3 \sim 2(1 \text{ unknown})$ 2 > 3 (1 unknown) 2 ~ 3 > 1

Fluorescence/PARAFAC Weaknesses

•Component 3 behavior across studies is highly variable •Previous PARAFAC studies do not acknowledge the effects of water quality on DOM properties

-Water sample conditions, e.g., pH, ionic strength, dissolved oxygen, temperature, and metals content, must be held constant when characterizing DOM with PARAFAC

•Existing PARAFAC research fails to recognize whether changes in DOM component fluorescence are due to:

- a) a chemical transformation,
- b) a physical transformation, or
- c) an addition/removal of DOM compounds
- •Caution should be exercised when comparing PARAFAC models

-PARAFAC results only pertain to the spatial and temporal variability of the samples used to create the model

on	
vith FAC)?	Are there any weaknesses of using fluorescence with PARAFAC?
ation-	•Researchers relate the location and shape of components to previously identified components
ndent	in other studies to validate results
pounds	•However, discussion on the characteristics of similar components across studies is lacking

Fe³⁺ coagulation?