

Leonard Shabman Resources for the Future

Designing Pay-for Environmental Services Programs

The Florida Ranchlands Environmental Services Project (FRESP)

FRESP The Florida Ranchlands Environmental Services Project

Goal: Design program to pay ranchers for Water and P Retention

- Profit Center for thin margin enterprises
- Complement Exiting Programs
- Cost-effective for taxpayers, relative to public projects
- Feasible to administer

Lake Okeechobee and the "Northern Everglades"

The Northern Everglades

Past, Present, Future?

The situation: The Lake and Estuaries

The Opportunity: Land Extensive Ranches Can Retain P-laden Storm Water from Lake

•More than 300,000 acre feet of *immediate* water retention

The Situation: P loads

Algae blooms in Nubbin Slough reveal phosphorus pollution ready to flow into Lake Okeechobee. Photograph Paul Gray

The Opportunity: Land Extensive Ranching Contributes Little To P Load On A Per Ace Basis

Land Use	Acres	% of Basin	P lbs/ac	
Row Crops	7,087	1%	170	
Dairy	21,063	2%	48	
Residential	24,068	2%	14	
Golf Course	932	0%	9	
Ornamental	7,937	1%	8	
Field Crops	5,624	0%	6	
Citrus	62,744	5%	6	
Improved Pasture	454,110	36%	3	
Sod	17,318	2%	2	

The situation: Limited Public Conservation Lands

26 20 Federal Managed Areas State (and other) Conservation Lands Projects on Florida Forever List //// Areas of Conservation Interest 13 18

The Opportunity: T & E Species Are Concentrated On Ranchlands

Can't buy <u>and</u> manage this land

The FRESP Vision – To Move

From ...

 Cost share for agency-approved BMPs for *P load control*

- Revenue neutral
- Limited verification / assumed effectiveness
- First come- first served

То ...

- Payments for producing
 multiple environmental
 services
 - Ranchers choose how to produce
 - Ranchers choose what and how much
- Ranch profit center
- Payment depends on documented performance
- Payments target most valued services

"Imagine a world in which farmers and ranchers were paid to generate not just standard agricultural goods such as strawberries, hay and corn, but a whole slew of ecosystem services such as water filtration, carbon sequestration and wildlife habitat. Imagine a world in which carbon and water-quality credits traded on a commodities exchange alongside oat and wheat futures.

Sound crazy? The U.S. Department of Agriculture (USDA) doesn't think so." Chicago Climate Exchange

FRESP builds on market-like principles

- Contracts between agencies of state and ranchers
- Establish payments to ranchers for water and P retention services
 - Ranchers choose level of services to produce and how to produce service
 - Agencies choose what ranches to contract with based on assessment of service potential

Payments are made

- If there is documentation that the service is provided during the contract period
- Only if, ranchers first implement minimum set of on –ranch actions ("above and beyond")

It sounds simple

Buyers of Environmental Services

Environmental Services Payments (\$)

Producers and Sellers of Environmental Services

The Plan: through 2012							
	2006	2007	2008	2009	2010	2011	2012
Design							
Demonstration							
Implementation							

Results Envisioned: Strom Water Retained

Results Envisioned: Detention Reservoir To Treat Off-ranch Water From Public Canal

Why Have Pilot Sites?

- Proof of concept for service provision by different WMAs
 - Construction
 - Operations

Proof of Concept for documentation

- Cost effective
- Directionally accurate
- Demonstration for other build interest
- Collaboration and discussion on program design
 - Contract design
 - Price making
 - Regulatory Compliance

How complicated can design get?

FRESP Team

FRESP Team Accomplishments

 Negotiated State Agency Buyer and Rancher Seller agreement on:

- Concept of PFS program (profit center to ranchers for documented services);
- Services paid for will be "Above and Beyond" ranch regulatory requirements
- Definitions of the environmental "commodities" (water retention and Phosphorus load reduction)
- Buying "option value" (regardless of rainfall) resulting in a guaranteed minimum annual payment over the life of a contract;
- Documentation approaches for water and P

The Commodity

Buyers of Environmental Services

Environmental Services

Payments (\$)

Producers and Sellers of Environmental Services

Water Retention

- Defined: Water held back for a period of time in wetlands, ditches and in the soil profile, with the release of water in a different volume, phase and pathway (seepage) than would be the case without the WMA.
- Measured: The acre feet that do NOT flow in the drainage network of the WMA site in a water year with the WMA, as compared with the water that would have flowed without the WMA.

Value of Water Retention to the Lake and Estuaries

How can program assure P-load reduction when water is retained?

Practical and not cost prohibitive commodity documentation

Photographic Documentation

1 4.3	9.5	less for
Reco	ord Keepin	C las
57	97	136
58	98	138
59	99	139
50	100	140
1	101	141
/	102	
/	103	To the second second
	104	100
	105	145
	106	146

Price Discovery

Buyers of Environmental Services

Environmental Services

Payments (\$)

Producers and Sellers of Environmental Services

Price making – still in the works

Agencies reservation price - willingness and ability to pay

- Cost of public alternative
- Immediacy
- Permanence
- Certainty
- Magnitude and location of service (targeting)
- Budget exposure and management

Ranchers reservation price - willingness and ability to sell

- Cost of production on the ranch
- Competitive return on investment
- Mesh with other ranch operations
- Cash flow certainty

Buyer reservation price

Seller reservation price

Contracting –It isn't easy being green

Buyers of Environmental Services

Environmental Services Payments (\$)

Producers and Sellers of Environmental Services

Program Requires Payment Certainty

- For investment planning, a rancher needs a guaranteed minimum annual payment over the contract lifetime regardless of rainfall
- For budget planning, an agency needs to accurately predict future budget outlays and be able to commit funds to future payments

So

 Assure payment certainty while still making payment contingent on actual service provision

Pre contract: Predicting Potential Water Retention

Potential water retention

Post-contract Documentation:

Determining Water Retained

Documenting water retention

Conceptual Hydrograph for Crediting Water Retained

Water Retention and P load: The Nexus

- A program to pay for increased water retention
 - must not add to the future P load over life of contract
 - must reduce P load above that realized without the program

A Measurement Problem

- Can measure pounds released from site after program begins
- Reduction estimate needs pounds released before program BUT
- Estimation models are expensive and time consuming
- Uncertainty
 - Understanding
 - Equations
 - Data

Quantitative Soil P Risk Index

Using the P index: Buyers Target Water Retention Sites

- Sites with high P load risk will not be eliminated from water retention program enrollment
 - Soils analysis identifies legacy P
 - Will be lost over time if no action is taken
- Water retention payment will be conditioned on managing site in consideration of P
 - Costs reimbursed for P management

Using the P index: Establishing Contract Requirements

- All sites that apply to the program will
 - Agree to not apply new P beyond agronomic rates
 - Agree to retain the first flush
- All sites will receive a second level assessment of their` ability to assimilate P
 - type and amount of vegetation (ex marsh system vs. pasture grass)
 - grazing of the site
- The second level of assessment may call for additional management and operations requirements, as a contract condition.

What if predicted services are not being realized?

•Actual retention outside confidence band

Payment assured over contract life *if*

•WMA Maintained as designed

•Operational rules followed as specified in contract

Requires documentation of O&M

Contract renegotiation possibilities

- Rancher innovation
- •If P load risk is increasing

The Plan: 2008 - 2011

	2006	2007	2008	2009	2010	2011	2012
Design							
Demonstration							
Implementation							

Measure service in same metrics as NE
Rules for participant eligibility
Procedures for price discovery
Establish model contracts for services rendered
Term, T&E and 404 protections, etc.
Secure sustainable funding stream *Transfer responsibility for program implementation to buyers & sellers and or their designated agents.*

FRESP and its market-like principles

- Contracts between agencies of state and ranchers
- Establish payments to ranchers for water and P retention services
 - Ranchers choose level of services to produce and how to produce service
 - Agencies choose what ranches to contract with based on assessment of service potential
- Payments are made
 - If there is documentation that the service is provided during the contract period
 - Only if, ranchers first implement minimum set of on –ranch actions ("above and beyond")