Phosphorus Issues and Protocol Development for Risk Assessment in Florida Watersheds

V.D. Nair, W.G. Harris, D.A. Graetz, R.D. Rhue, M. Chrysostome, and L.R. Ellis Soil and Water Science Department University of Florida

Phosphorus issues in Florida's major watersheds, the Suwannee River (SRB) and Lake Okeechobee (LOB) Basins are of a different nature. The karst-dominated Lower SRB spans several Florida counties where agricultural activities have the potential to affect the groundwater, springs and estuary via vertical movement of nutrients. Hence, the P retention capacity of the soil with depth is a relevant factor in determining the safe lifespan of an application site. Previous research has indicated that there is a delay between soil P loading from an agricultural source and the movement of P to a water body. This delay is the result of soil retention of P and may be mistakenly attributed to P retention in the limestone aquifer. However, the degree of P interaction with karst solution channels is uncertain. A common threshold value set for environmentally-critical P concentration in water is 0.1 mg P L⁻¹. Ground- and spring water P data at some locations within SRB show concentrations > 0.1 mg P kg⁻¹. In contrast to the SRB, movement of P applied to LOB soils is primarily via shallow base flow (subsurface leaching) or surface runoff to streams, with ultimately transport to the lake. Soil test phosphorus (STP), used as a measure of P risk, does not capture risk in Spodosols typical of the LOB, even if the STP is low, due to low P sorption capacities. A new site specific and practical protocol that is applicable to both basins, the "safe" soil P storage capacity (SPSC) recently developed for sandy soils, captures risk arising from low P sorption capacity as well as previous P loading and can be used to estimate the lifespan of a manure application site under a given loading regime.

Keywords: Lake Okeechobee Basin, "safe" soil P storage capacity, soil test P, Suwannee River Basin