

University of Florida Water Institute Symposium

Dealing with Climate Uncertainty in Operating a Reliable Water Supply System

Alison Adams, Ph.D., P.E. Tampa Bay Water

February 27-28, 2008

1

- Tampa Bay Water Who we are and what we do
- Flexible and integrated water supply system
- Climate variability and uncertainty why it is important
- Dealing with climate variability and change
 - Current operations
 - Future planning

Tampa Bay Water- Where we are

2.5 Million Residents Served

ΤΑΜΡΑ

ATER

260 mgd total public supply average daily flow

- Largest wholesale water supplier in Florida
- Largest wholesale water supplier in Southeast United States
- A unique system in North
 America

TAMPA
BAY
WATERIntegrated, Flexible and DiverseWATERWater Supply System

An integrated, *flexible and diverse* system that produces a su*stainable and reliable* water supply

TAMPA BAY Tampa Bay Seawater Desalination

TAMPA
BAY
WATEREnhanced Surface Water System

Tampa Bypass Canal

Alafia

River

Intake

Regional Surface Water Treatment Plant

TAMPA BAY C. W. Bill Young Regional Reservoir

Oct 2005 15.5 billion gallons of storage

July 2007 Only 2 billion gallons of storage remaining

TAMPA
BAY
WATEROperating Protocol Implementation Process –
Using recent data to make adjustments

Cumulative Surface Water Withdrawals

TAMPA
BAY
WATERC. W. Bill Young Regional Reservoir
Summary

12

- River supplies depend on rainfall
- Dry season supply depends on reservoir water levels
- System reliability in times of drought depends on groundwater supplies

TAMPA
BAY
WATERWater Shortage Mitigation Plan -
Trigger Objectives

- Hydrologic triggers are used to enter or exit the various water shortage levels
- Two types of triggers desired
 - 1. Hydrologic indicators used to provide early warning of a potential drought
 - 2. Water shortage triggers used to describe the severity of surface water supply shortage

Rainfall (RCD Rainfall)

- 12-month Rolling Cumulative Deficit rainfall
- Streamflow (RMD Flow)
 - 12-month Rolling Median Deficit in Hillsborough River flow at Morris Bridge
- Surface water storage (ResELEV)
 - Regional Reservoir Elevation/volume

Water Shortage Levels	Triggers	
	ON	OFF
I. Drought Alert (Moderate)	RCD Rainfall <u><</u> -5" OR RMD Flow <u><</u> - 10 mgd	No RCD Rainfall AND RMD Flow <u>></u> - 5 mgd
II. Drought Warning (Severe)	RCD Rainfall <u><</u> -5" AND RMD Flow <u><</u> - 10 mgd	No RCD Rainfall OR RMD Flow <u>></u> - 5 mgd
III. Regional Supply Shortage (Extreme)	RMD Flow <u><</u> -10 mgd AND Reservoir Level drops below 100' elevation (~60 days SW supply)	RMD Flow <u>></u> - 5 mgd OR Reservoir Level moves above 110' Elevation
IV. Water Supply Crisis (Critical)	RMD Flow <u><</u> - 10 mgd AND Reservoir Level drops below 85' elevation (~20 days SW supply)	RMD Flow <u>></u> - 5 mgd OR Reservoir Level moves above 100' Elevation

TAMPA BAY Historical WSMP Simulations

RCD-rainfall, RMD-flow, and ResELEV with simulated water-shortage-level declarations vs time (1977 -2007)

1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

TAMPA
BAY
WATERReservoir Levels Critical Indicator of
Water Supply Conditions

- In Tampa Bay Water's interconnected, unique system, water supply shortage levels are linked to reservoir storage
- Our interconnected system allows us to manage between surface water storage and ground water storage

Tampa Bay Water is becoming more reliant on surface water sources

Source of Regional Supplies in 2012

FAMPA BAY Future changes in climate may affect the water resources upon which the region depends

TAMPA BAY Observed El Niño and La Niña phases WATER

Historical Sea Surface Temperature Index

TAMPA
BAYAtlantic Multi-decadal Oscillations

TAMPA
BAY
WATERAdaptive Management Strategies for
Long Range Planning

Adaptive Management

- Support action in the face of uncertainty and limited scientific knowledge
- Implementation
 - water supply planning, construction programs, and operations
- Feedback
 - monitoring and review of economic and environmental outcomes of management actions
- Re-evaluation
 - Conceive new strategies (planning and operational) as information accumulates and understanding improves
- Repeat loop until desired result is achieved

Failure to adapt to climate change and climate variability can be costly and hinder reliability and environmental stewardship goals

- Collaborative climate research efforts with University of Florida and NOAA
- Risk-based modeling to incorporate planning uncertainties
- Adaptive management strategies in both operational and planning agency functions

Schematic View - Run Date: 1/19/2008 12:00:00 AM

Data Selection

