Potential for Statewide Saline Encroachment of Florida Spring Water

R. Copeland*, N. Doran*, A. White*, S. Upchurch
*Florida Geological Survey

Median Nitrate Concentrations in 13 Selected First-Magnitude Springs in Florida

- Florida Spring Task Force Rept (2000)
- Recommendations
 - Implement Springs Monitoring
 - Document Long-Term Trends

Trends

- Sufficient Data (1991 2003)
 - 58 springs and 46 wells
 - Major Analyte Groups and Examples
 - Field (Temp, discharge)
 - Rock (Ca, Mg, HCO3)
 - Saline (Na, Cl, SO4)
 - Nutrients (NO3, P)
- Severe Drought Occurred 1998-2002
 - Cause of Numerous Trends

Statewide Trends in Springs (1991-2003)

toet

Analyte	,
---------------------------	---

- NO3
- Flow
- Ca
- Mg
- Sr

		D
25	12	
3	14	
31	3	
32	3	
28	1	
2 9	1	

16

Statewide Trends in Springs (1991-2003)

Analyte	<u>†</u>	J	Direct	P-Val
Na	30	5	↑	<0.001
■ K	20	4	↑	0.007
CI	28	6	1	<0.001
■ SO4	27	8	1	0.002
TDS	18	3	↑	0.001
■ Sp. Cond.	24	9	↑	0.007

Statewide Trends in Wells (1991-2003)

Analyte	1		Direct	P-Val
Temp	20	8	\uparrow	0.036
WL(msl)	4	18	\downarrow	0.004
■ pH	3	20	\downarrow	<0.001
■ Ca	3	12		0.035

Spring and Well Trends Different Why? Wells **Springs** (Generally) Many sources shallow

Land surface Water table ▼ Sea Zone of dispersion **Freshwater** Saltwater

Sea-Water/Fresh-Water Transition Zone

Intermediate Aquifer & Confining System

Trends in Wells Rock and Field Analytes

Well trends show decreasing Water levels (reflected by pH, and Ca)

<mark>GW</mark> Temp↑

WL ↓
pH ↓
Ca ↓

Causes of Spring Trends for Rock and Saline Indicators

- This Discussion
- Encroachment Natural
- Intrusion Man induced
- → ↑ Rock Analytes = Older Mineralized Water from Storage → Precursor of Encroachment & Possibly Intrusion (yellow flag)
- ↑Saline Analytes = Encroachment/Intrusion Gen. lag behind Rock Analytes (red flag)

Springs

Nutrients – springshed scale

 Drought, ↑ GW use, → chemical degradation (encroachment and possibly intrusion)

Also, ↑ Population Growth causes
 ↑demand for GW (more during drought)

Springs and Wells

■ Encroachment/intrusion – potentially more serious than ↑ nutrients

■ Encroachment/intrusion – potentially more serious than ↑ nutrients

Recommendations

Phone 850-488-9380

- Incorporate springs into an encroachment/
- intrusion monitoring network
- Combine with well networks into a <u>statewide</u> spring/well network
- Incorporate water use and pumpage data into monitoring
- Produce annual reports with "Health" indices