Re-Evaluating Nitrogen Limitation in Florida Springs

Jim Heffernan^{1,2}, Matt Cohen², Tom Frazer³, Jason Evans², and Dina Liebowitz^{2,4}

Photo: Larry Kohrnak

¹Water Institute

²School of Forest Resources and Conservation

³Fisheries and Aquatic Sciences

⁴Natural Resources and Environment

University of Florida

UF Water Insitute
Symposium
February 27th, 2008

Florida Springs

700+ artesian springs in North and Central Florida
Among highest density globally

38 first-magnitude springs
Discharge > 100 cfs

Springs have significant ecological, cultural, economic value

Spring Ecosystems

Hydrologic, chemical, and thermal stability

High water clarity

Productive macrophyte communities

Algae in Springs

Mid-1980s – Earliest observations

Presently observed in nearly all springs

Cover 50% of spring bottoms

What are the causes of algal overgrowth?

Changes in nutrient chemistry of Florida Springs

Nitrate concentrations have increased dramatically over the past 30-50 years

Background ~ 50-100 ug NO₃-N/L

Cause of algal blooms?

Alleviation of N

limitation

Scott et al. 2004 Springs of Florida. FDEP Bulletin 66

Evidence for eutrophication in other ecosystems

Lakes, Estuaries, Coastal Oceans

Correlations

Within and across systems

Experimental enrichments

Lab and field

Do we observe these patterns in springs?

V. Smith, 2006 L&O

Nitrate-algae relationships among springs

From Stevenson et al. (2004) Ecological condition of algae and nutrients in Florida springs. FDEP Report.

Nitrate-algae relationships within springs

From Stevenson et al. 2004

Nitrate-algae relationships within springs

Distance downstream (miles)

From Stevenson et al. 2004

From Sloan 1956

Nitrate-algae relationships within springs

Ichetucknee River
Mission Springs,
Devil's Eye and Mill Pond have
greatest algae problem

Kurz et al. 2004 report to FDEP

Nutrient limitation experiments

Laboratory microcosms

 $NO_3 < 0.28 \text{ mg/L}$

Other studies: 0.3-0.6

Growth rates increase 200%

Flow-through mesocosms

 $NO_3 < 0.1 \text{ mg/L}$

Growth rates increase 50%

Nutrient limitation experiments

Why does flow matter?

Constant delivery even at low concentration Flux is better metric of nutrient availability (Borchardt 1996)

In situ experiments

Little response even in low-N springs

Spring Nutrient Loads in Perspective

- At present concentrations (~500 ppb), N loads to Ichetucknee River bed are 5x greater than fertilizer inputs to high-intensity cornfields
- At historic concentrations (~100 ppb), N loads would still be about equal to that fertilizer input

Implications

Reductions in nutrient loads may not reduce occurrence of nuisance algal blooms

Adaptive Management

Development and evaluation of alternative hypotheses

Evaluate responses in springs where nitrate is reduced

Caveats

This analysis is 'global'

Suggests that N enrichment is not primary cause of algal blooms in springs generally

Some springs might be sensitive to nutrient enrichment

N-limitation hypothesis is simplistic

Feedbacks and interactions could account for at least some contradictory observations

Precautionary principle applies

N effects could interact with or be masked by other variables

Other strong rationales exist for reducing N loads

Toxic effects of nitrates
Human health concerns
Export to N-sensitive ecosystems downstream
e.g. Gulf Coast, St. John's River

Watershed protection efforts have a wide range of benefits
Discharge
BOD and DO

Alternative Hypotheses

Changes in dissolved oxygen

Significant declines since 1970s Known effects on invertebrate grazers

Declining discharge and flow velocity

Climate
Consumptive use

Recreational disturbance

Data from Scott et al. 2004

Acknowledgements

- Santa Fe River Hydrologic Observatory
 - Wendy Graham
 - Travis Rayfield
 - John Martin
 - Joe Delfino

Questions?

Timing of Algal Overgrowth

