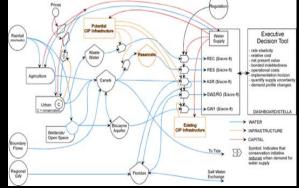
Dynamic Decision Support System (D²S²) Kathleen O'Neil, PBS&J

Helping Water Managers Plan for the Future

with

uture


Dynamic Decision Support System (D2S2)

American Water Works Association Research Foundation (AwwaRF) Tailored Collaboration (TC) Project

Team:

University of Florida, Water InstituteStockholm Environment Institute (SEI-US)

Scope:

Develop a systems-based planning tool integrating water supply, economic, and social variables.

Dynamic Capital Improvement Planning Tool

Dynamic Feasibility Study

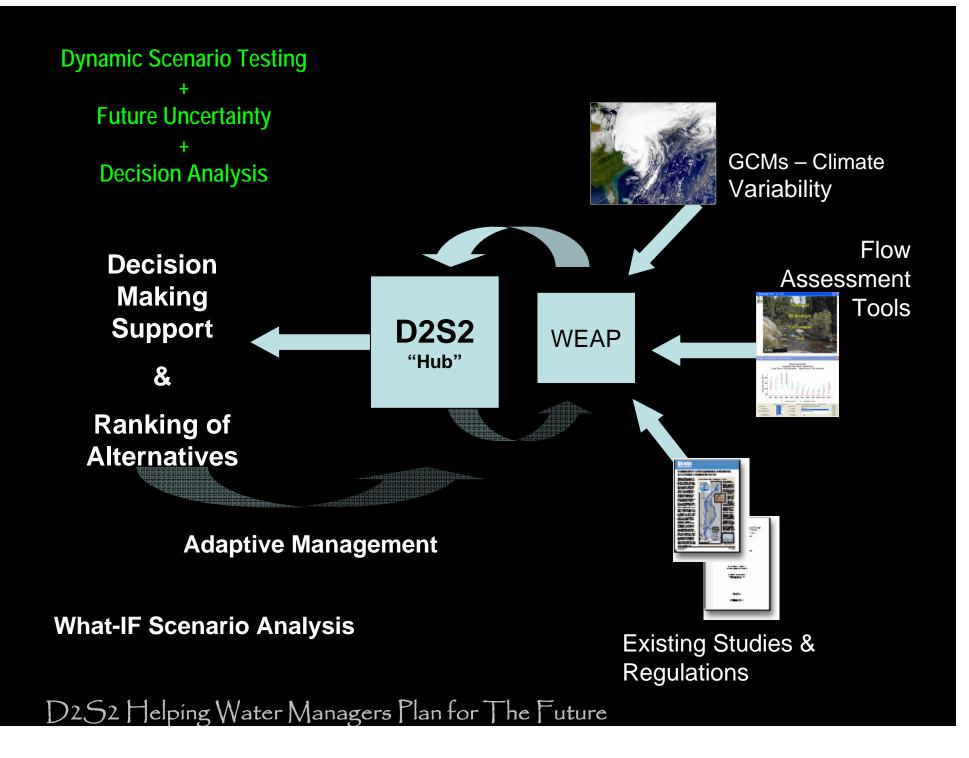
UF Teaming Partners

Dr. James W. Jawitz, P.E. Associate Professor, Environmental Hydrology Soil and Water Science Department

Dr. Gregory Kiker Assistant Professor Agricultural and Biological Engineering Dept.

Dr. Burcin Unel Post-Doctorate Research Associate PURC Dr. Sanford Berg, Distinguished Service Professor of Economics Director of Water Studies, PURC

Dr. Mathew Cohen Assistant Professor Forest Water Resources, Hydrology


Julie Padowski NSF IGERT Fellow Soil and Water Science Department

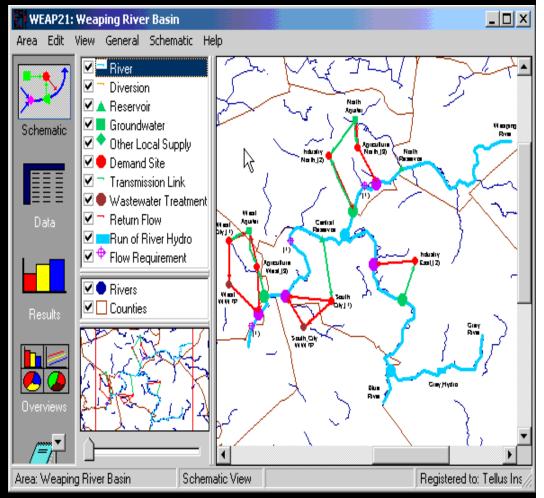
D^2S^2 What is it?

Dynamic Scenario Testing + Future Uncertainty + Decision Analysis

With:

- Climate Change Projections,
- Impact Assessment,
- Focusing Tool for Data Assessment & Monitoring,
- Triple Bottom Line Accounting Criteria,
- Research in Conservation Pricing, Decision Modeling
 & Stakeholder Scenario Analysis

Dynamic Scenario Testing


Dynamic Scenario Testing

Future Uncertainty + Decision Analysis

Stockholm Environment Institute – US (SEI-US) Water Evaluation and Planning (WEAP) Tool

•Built-in models for: Rainfall runoff and infiltration, evapotranspiration, crop requirements and yields, surface water/groundwater interaction, and instream water quality

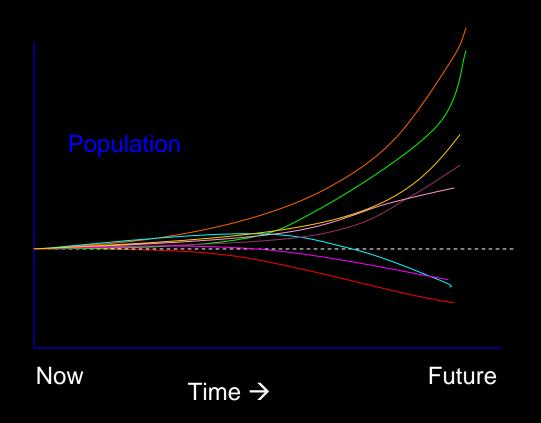
- •GIS-based, graphical "drag and drop" interface
- •Model-building capability with a number of built-in functions
- •User-defined variables and equations
- •Dynamic links to spreadsheets and other models
- •Embedded linear program solves allocation equations

Networked Research

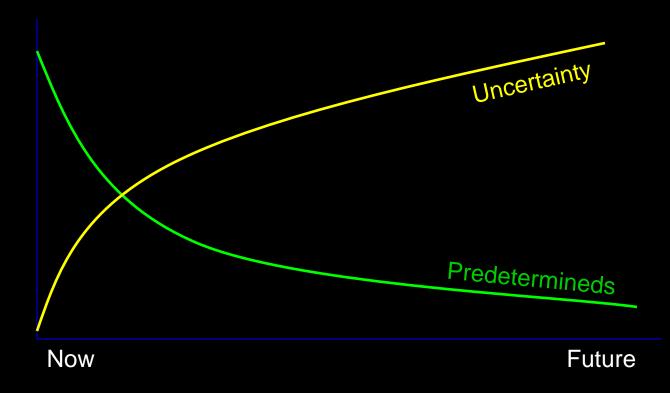
Cutting Edge Integration and Results with:

- **Reservoir Yield Analysis** and Dynamic Downstream Flow & Impact Assessment
- New **Impact Assessment** tools TNC Indicators of Hydrologic Alteration (IHA)
- Energy –Water Inter-relationships LEAP worldwide leader in energy scenario analysis
- Climate Change Impacts on Water Management Alternatives NCAR-SEI
- <u>Uncertainty Analysis</u> in Water Management Strategies PBS&J, UC, RAND, TUFTS
- **Decision Analysis in Stakeholder Visioning** and Scenario Planning PBS&J

Scenarios vs Forecasting

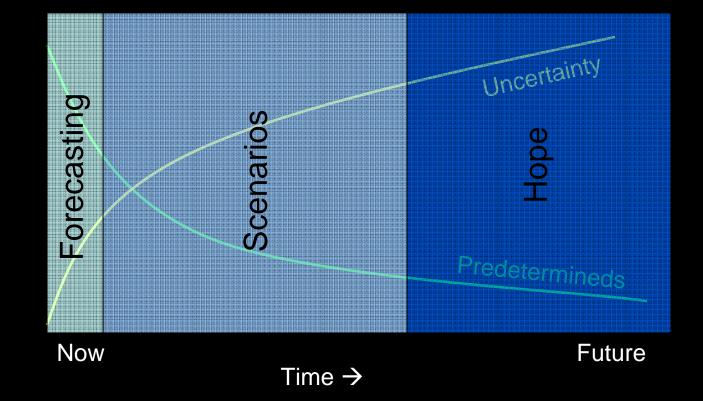

Incorporating Future Uncertainty Into the Decision Making Process

The uncertainty in forecasts is often buried and kept from decision makers. Scenarios directly address uncertainty.


How Do Scenarios Relate to Uncertainty?

Dynamic Scenario Testing + Future Uncertainty + Decision Analysis

- Checking every permutation isn't productive for decisionmaking.
- Can we bound the uncertainty in a scenario?


Balance of Predictability and Uncertainty

Things that we can actually forecast decrease as we go into the future.

After Van Der Heijden, 2005

Preferred Planning Mode

After Van Der Heijden, 2005

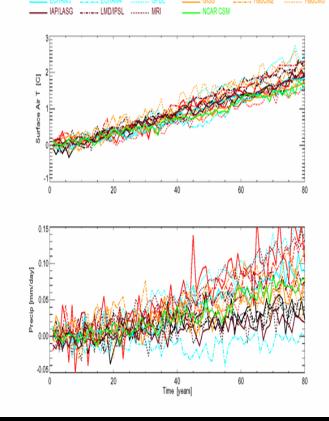
Future Uncertainty

Climate Change

Global+Annual Means (1% / yr CO₂ - control)

Traditional Models:

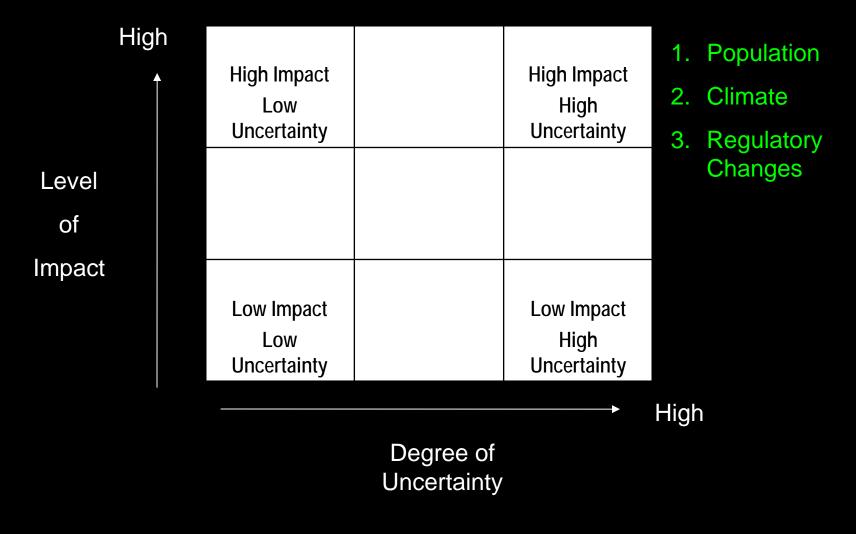
• Use historic trends to forecast into the future


Scenario Analysis:

- Does not assume that the trends will repeat
- Identifies key driving variables and plausible future trends
- Looks at 'what-if' analysis over a range of possible futures

comparison Project (16 models)

> 80 yr. emp. Rise



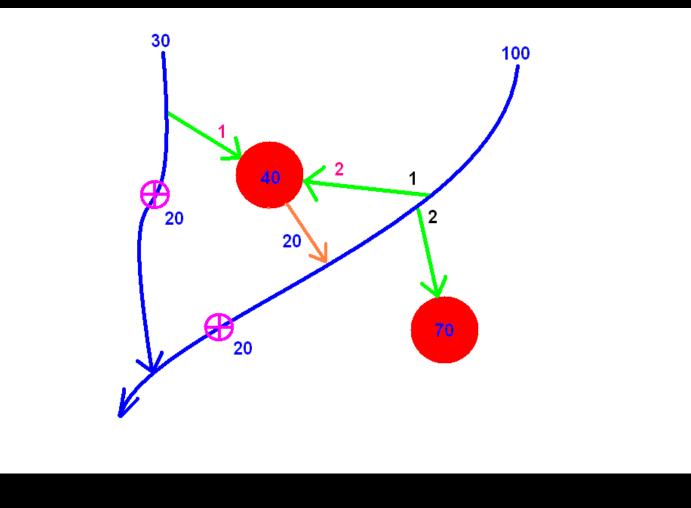
Source: David Yates, NCAR

D2S2 Helping Water Managers Plan for The Future

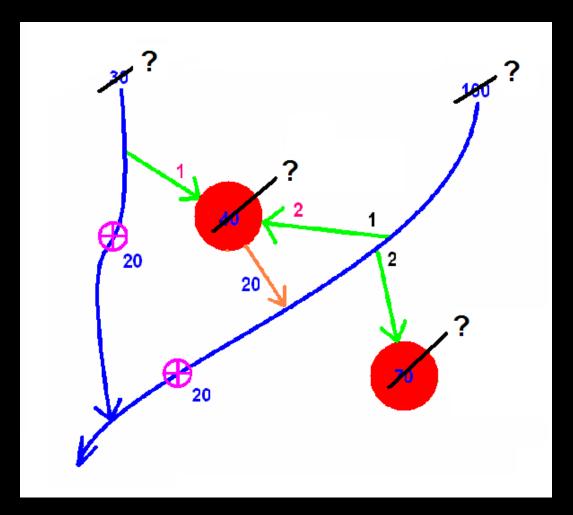
80 yr. Precipitatio n Trend

Driving Force Ranking Space

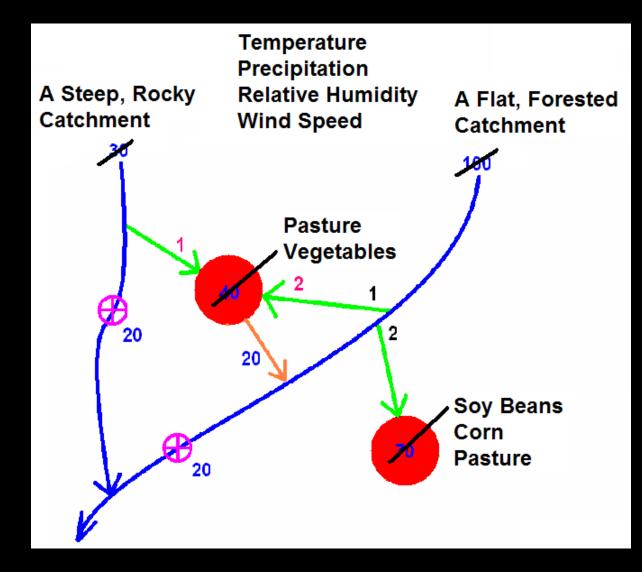
Standard Hydrologic Models vs. Planning with (Incertainty (WEAP)


Integrated Basin Models –

- dynamic allocation or 'water budget' optimized under set constraints and objectives
- Recreates the 'perfect drought' but uses past records to predict the future

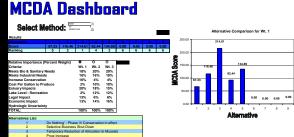

WEAP –

- Hydrology-driven planning with uncertainty about future climate patterns
- What-if precipitation, demands, and flows don't follow historic trends?


A Simple Planning Model

What do we do now?

ADD HYDROLOGY!


Related Research - NCAR

Principal Researcher: Dr. David Yates, NCAR Parallel AwwaRF TC Project

NCAR-SEI Downscaling GCMs to Local Scale, Mapping to Local Trends & Projecting New Climate Futures for Utilities

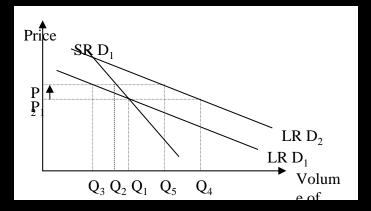
Dynamic Scenario Testing

+ Future Uncertainty + Decision Analysis Decision Analysis Linked to Scenario Analysis

PBC Water Mission:		Best W	/ater		Be	est Service)	Best Environmental Stewardship					
		ncrease Wate crease Storag		I		m Impacts, Viab Sustainability	ility &	Benefit to Regional System	Carbon Footprint	Estuarine Systems	Wetland Systems		
Measured Variable	AvailablelocalizedAnnualLoss toSNet ofwellfieldStorageDeepF		Regional Solution - Flexible & Future	Long-Term Capital & Permit Risks	\$ /gal price or cost	Decr. Net Reg Sys Water Used in Drought	Energy Needs	Decr. Loss to Tide	Incr. Wetland Acreage				
Units	s Mgd Ac-ft/yr Ac-ft/yr Ac-ft/yr		L, M, H	L, M, H	\$ / gal	Ac-ft/yr	L, M, H	Ac-ft/yr	Acres				
Source of Data	WEAP	WEAP	WEAP	WEAP	Project Description	Relative Estimate	WEAP	WEAP	Relative Estimate	WEAP Canals	CIP		
Baseline (B) Existing Infrastructure													
B + CIP													
B + CIP + L-8													
B + CIP + Site 1													
B + CIP + Wetlands													
B + CIP + Enhanced Recharge w Reuse													
Triple Bottom Line Criteria:		Soci	al		Economic	Risk	Cost	Environmental					
Notes:													

Interactive Decision Analysis

Results																					
Alternative	1	2	3	4	5	6	7	8	9				Alternative Comparison for Wt. 1								
Score	4.02	6.05	8.05	97.03	8.02	0.00	0.00	0.00	0.00		120.00 -										
Ranking	5	4	2	1	3	6	6	6	6			97.03									
										Ð	100.00 -										
Relative Importance	e (Percen	nt Weight)) 🛛							Score	~~ ~~					1					
Criteria:			Wt. 1	Wt. 2	Wt. 3					Š	80.00 -										
Meets Basic Sanita	r <mark>y Needs</mark>	i	1	1	1											1					
Meets Industrial Ne	eds		1	1	1					Õ	60.00 -										
Increase Conservat	i <mark>on Mea</mark> s	sures	92	1	1					MC						1					
Production Cost			1	1	1					2	40.00 -										
Estuary Impacts			1	1	1											1					
Lake Level - Recrea	tion		1	1	1						20.00 -		6.05	8.05		0.00					
Legal Challenge			1	1	1						20100	4.02	••••			8.02	0.00	0.00	0.00	0.00	
Economic Impact			1	1	1						0.00							0.00	0.00		
Hydrologic Uncerta	inty		1	1	1						0.00 -	1	2	3	4	5	6	7	8	9	
TOTAL:			100	9	9			_	_)	2	3	4	C the model	6	/	Õ	9	
													lafa	1000		"No	Act				
											1					"No-	ACU	On			
											2	'LO	cal	Res	er	voir					
											3	3 Re	gior	nal	Re	serv	<i>oir</i>				
											4	l Lo	cal	Res	er	voir	& C	ons	erva	ation	
																				ipplie	
D2S2			λ/_+	N A			Pl.	(⁻		F.							(eg.				


UF Research - Economics

Principal Researcher:

Dr. Sanford Berg, Distinguished Service Professor of Economics Director of Water Studies, PURC (University of Florida)

- Scenario Analyses for Different Risk and Investment Strategies
- Recognizing the Possibility of Obtaining Bulk Water through Trades or Off-sets: a Utility should not turn to high cost sources unless all feasible alternatives are considered.
- One Alternative: Water Conservation Programs (Information and Conservation Pricing)
- Task: Econometric Analysis of the Role of Information and Rate Structures on Consumption

UF Research - Economics

Dr. Burcin Unel

Post-Doctorate Research Associate PURC Conservation Through Pricing

- Econometric Analysis of the Role of Information and Rate Structures on Consumption
- Examining the Importance of Consumer Awareness of Rates and the Availability of Substitutes

UF Research - Soil & Water Science

Dr. James W. Jawitz, P.E. Associate Professor Environmental Hydrology

Julie Padowski NSF IGERT Fellow Ph.D. Student

Results Table

SCENARIO 4													
WAM	Stakeholder 1		Stakeholder 2		Stakeh	older 3	Stakeh	older 4	Stakeh	older 5	Stakeholder 6		
Alternatives	Score	Rank	Score	Rank	Score	Rank	Score	Rank	Score	Rank	Score	Rank	
Reference (Existing Infrastructure)	57.29	6.00	59.60	6.00	64.48	6.00	60.65	6.00	62.17	6.00	64.48	6.00	
Capital Improvement Plan (CIP)	91.53	4.00	94.37	3.00	102.46	3.00	96.21	4.00	98.69	3.00	102.46	3.00	
CIP + L-8 Project	135.99	1.00	140.42	1.00	151.75	1.00	142.32	1.00	146.04	1.00	151.75	1.00	
CIP + Site 1 Project	75.65	5.00	77.99	5.00	84.67	5.00	79.54	5.00	81.57	5.00	84.67	5.00	
CIP + New Wetlands Project	117.94	2.00	121.54	2.00	132.12	2.00	124.14	2.00	127.31	2.00	132.12	2.00	
CIP + Enhanced Recharge Project	91.91	3.00	94.31	4.00	101.32	4.00	96.51	3.00	98.68	4.00	101.32	4.00	

UF Research - Soil & Water Science

Julie Padowski:

Verification of Models Using Historic Data in Decision Models

Small Scale: Wakodahatchee Wetlands

http://www.pbcgov.com/waterutilities/wakodahatchee/tour.htm

Large Scale: Tampa Bay

http://www.pinellascounty.org/CCNews/12_12_03.htm

UF Research - Stakeholder Facilitation

Dr. Gregory Kiker Assistant Professor Agricultural and Biological Engineering Dept.

Facilitator Dr. Greg Kiker (UF) Takes Questions From Stakeholders

PBS&J Research

Kris Esterson HydroGeoChemist

Effects of Climate Change and Sea Level Rise in Florida

D^2S^2 What is it?

Dynamic Scenario Testing + Future Uncertainty + Decision Analysis

With:

- Climate Change Projections,
- Impact Assessment,
- Focusing Tool for Data Assessment & Monitoring,
- Triple Bottom Line Accounting Criteria,
- Research in Conservation Pricing, Decision Modeling
 & Stakeholder Scenario Analysis

Thank You

Nothing in the world Is as soft and yielding as water. Yet for dissolving the hard and inflexible Nothing can surpass it. The soft overcomes the hard; The gentle overcomes the rigid. Everyone knows this is true, But few can put it into practice (Lao Tzu, 560 BC)

