Understanding the hydrological functioning of tidally influenced floodplain forests is essential for advancing ecosystem protection and restoration goals in impacted systems. However, finding direct relationships between basic hydrological inputs and floodplain hydrology is hindered by complex interactions between surface water, groundwater, and atmospheric fluxes in a variably saturated matrix with heterogeneous soils, vegetation, and topography. Thus, an explanatory method for identifying common trends and causal factors is required. Dynamic factor analysis (DFA), a time series dimension reduction technique, models temporal variation in observed data as linear combinations of common trends, which represent unidentified common factors, and explanatory variables. In this work, DFA was applied to model water table elevation (WTE) in the floodplain of the Loxahatchee River (Florida, USA), where altered watershed hydrology has led to changing hydroperiod and salinity regimes and undesired vegetative changes in the floodplain forest. |