Sea level rise (SLR) has the potential to affect a variety of coastal habitats with a myriad of deleterious ecological effects and to overwhelm human settlements along the coast. SLR should be given serious consideration when more than half of the U.S. population lives within 50 miles of the coast. SLR effects will be felt along coastal beaches and in estuarine waters, with consequences to barrier islands, submerged aquatic vegetation beds, sand and mud flats, oyster reefs, and tidal and freshwater wetlands. Managers of these coastal resources must be aware of potential consequences of SLR and adjust their plans accordingly to protect and preserve the resources under their care. The Gulf Coast provides critical habitats for a majority of the commercially important species in the Gulf of Mexico, which depend on inshore waters for either permanent residence or nursery area. The ecosystem services provided by these coastal habitats are at risk from rising sea level. Our team will assess the risk to coasts and coastal habitats from SLR in a 5-year project. We will apply existing models of circulation and transport from the watershed to the sea. The ultimate prediction will be of sediment loadings to the estuary as a result of overland flow, shoreline and barrier island erosion, and salinity transport, all of which will be used to model the evolution of intertidal marshes (MEM II). Over the five-year course of our research we will be simulating hydrodynamics and transport for all three NERRS reserves, including: Apalachicola, Weeks Bay and Grand Bay. The project will result in products whereby managers will be able to assess marshes, oyster reefs, submerged aquatic vegetation, predict wetland stability and indentify restoration locations for marsh and oyster habitats. In addition, we will produce Decision Support tools that will enable managers to predict future coastal erosion rates for management-specified shorelines. Project outcomes will enable the management community to prioritize risk management strategies, reformulate set back requirements, improve guidelines for construction of breakwaters and other coastal infrastructure, and assess water resources impacts and protection needs. |
Title: | Integrated Modeling for the Assessment of Ecological Impacts of Sea Level Rise. American Geophysical Union, Fall Meeting, 2010. |
Authors: | Hagen, S. C.; Lewis, G.; Bartel, R.; Batten, B.; Huang, W.; Morris, J.; Slinn, D. N.; Sparks, J.; Walters, L.; Wang, D.; Weishampel, J.; Yeh, G. |
|